/* * This file is part of the OpenMV project. * Copyright (c) 2013/2014 Ibrahim Abdelkader * This work is licensed under the MIT license, see the file LICENSE for details. * * NT99141 driver. * */ #include #include #include #include "sccb.h" #include "nt99141.h" #include "nt99141_regs.h" #include "nt99141_settings.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG) #include "esp32-hal-log.h" #else #include "esp_log.h" static const char *TAG = "NT99141"; #endif //#define REG_DEBUG_ON static int read_reg(uint8_t slv_addr, const uint16_t reg) { int ret = SCCB_Read16(slv_addr, reg); #ifdef REG_DEBUG_ON if (ret < 0) { ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret); } #endif return ret; } static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask) { return (read_reg(slv_addr, reg) & mask) == mask; } static int read_reg16(uint8_t slv_addr, const uint16_t reg) { int ret = 0, ret2 = 0; ret = read_reg(slv_addr, reg); if (ret >= 0) { ret = (ret & 0xFF) << 8; ret2 = read_reg(slv_addr, reg + 1); if (ret2 < 0) { ret = ret2; } else { ret |= ret2 & 0xFF; } } return ret; } static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value) { int ret = 0; #ifndef REG_DEBUG_ON ret = SCCB_Write16(slv_addr, reg, value); #else int old_value = read_reg(slv_addr, reg); if (old_value < 0) { return old_value; } if ((uint8_t)old_value != value) { ESP_LOGD(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value); ret = SCCB_Write16(slv_addr, reg, value); } else { ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value); ret = SCCB_Write16(slv_addr, reg, value);//maybe not? } if (ret < 0) { ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret); } #endif return ret; } static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value) { int ret = 0; uint8_t c_value, new_value; ret = read_reg(slv_addr, reg); if (ret < 0) { return ret; } c_value = ret; new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset); ret = write_reg(slv_addr, reg, new_value); return ret; } static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2]) { int i = 0, ret = 0; while (!ret && regs[i][0] != REGLIST_TAIL) { if (regs[i][0] == REG_DLY) { vTaskDelay(regs[i][1] / portTICK_PERIOD_MS); } else { ret = write_reg(slv_addr, regs[i][0], regs[i][1]); } i++; } return ret; } static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value) { if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) { return -1; } return 0; } static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value) { if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) { return -1; } return 0; } #define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, enable?mask:0) static int calc_sysclk(int xclk, bool pll_bypass, int pll_multiplier, int pll_sys_div, int pll_pre_div, bool pll_root_2x, int pll_seld5, bool pclk_manual, int pclk_div) { const int pll_pre_div2x_map[] = { 2, 3, 4, 6 };//values are multiplied by two to avoid floats const int pll_seld52x_map[] = { 2, 2, 4, 5 }; if (!pll_sys_div) { pll_sys_div = 1; } int pll_pre_div2x = pll_pre_div2x_map[pll_pre_div]; int pll_root_div = pll_root_2x ? 2 : 1; int pll_seld52x = pll_seld52x_map[pll_seld5]; int VCO = (xclk / 1000) * pll_multiplier * pll_root_div * 2 / pll_pre_div2x; int PLLCLK = pll_bypass ? (xclk) : (VCO * 1000 * 2 / pll_sys_div / pll_seld52x); int PCLK = PLLCLK / 2 / ((pclk_manual && pclk_div) ? pclk_div : 1); int SYSCLK = PLLCLK / 4; ESP_LOGD(TAG, "Calculated VCO: %d Hz, PLLCLK: %d Hz, SYSCLK: %d Hz, PCLK: %d Hz", VCO * 1000, PLLCLK, SYSCLK, PCLK); return SYSCLK; } static int set_pll(sensor_t *sensor, bool bypass, uint8_t multiplier, uint8_t sys_div, uint8_t pre_div, bool root_2x, uint8_t seld5, bool pclk_manual, uint8_t pclk_div) { return -1; } static int set_ae_level(sensor_t *sensor, int level); static int reset(sensor_t *sensor) { int ret = 0; // Software Reset: clear all registers and reset them to their default values ret = write_reg(sensor->slv_addr, SYSTEM_CTROL0, 0x01); if (ret) { ESP_LOGE(TAG, "Software Reset FAILED!"); return ret; } vTaskDelay(100 / portTICK_PERIOD_MS); ret = write_regs(sensor->slv_addr, sensor_default_regs); //re-initial if (ret == 0) { ESP_LOGD(TAG, "Camera defaults loaded"); ret = set_ae_level(sensor, 0); vTaskDelay(100 / portTICK_PERIOD_MS); } return ret; } static int set_pixformat(sensor_t *sensor, pixformat_t pixformat) { int ret = 0; const uint16_t (*regs)[2]; switch (pixformat) { case PIXFORMAT_YUV422: regs = sensor_fmt_yuv422; break; case PIXFORMAT_GRAYSCALE: regs = sensor_fmt_grayscale; break; case PIXFORMAT_RGB565: case PIXFORMAT_RGB888: regs = sensor_fmt_rgb565; break; case PIXFORMAT_JPEG: regs = sensor_fmt_jpeg; break; case PIXFORMAT_RAW: regs = sensor_fmt_raw; break; default: ESP_LOGE(TAG, "Unsupported pixformat: %u", pixformat); return -1; } ret = write_regs(sensor->slv_addr, regs); if (ret == 0) { sensor->pixformat = pixformat; ESP_LOGD(TAG, "Set pixformat to: %u", pixformat); } return ret; } static int set_image_options(sensor_t *sensor) { int ret = 0; uint8_t reg20 = 0; uint8_t reg21 = 0; uint8_t reg4514 = 0; uint8_t reg4514_test = 0; // V-Flip if (sensor->status.vflip) { reg20 |= 0x01; reg4514_test |= 1; } // H-Mirror if (sensor->status.hmirror) { reg21 |= 0x02; reg4514_test |= 2; } switch (reg4514_test) { } if (write_reg(sensor->slv_addr, TIMING_TC_REG20, reg20 | reg21)) { ESP_LOGE(TAG, "Setting Image Options Failed"); ret = -1; } ESP_LOGD(TAG, "Set Image Options: Compression: %u, Binning: %u, V-Flip: %u, H-Mirror: %u, Reg-4514: 0x%02x", sensor->pixformat == PIXFORMAT_JPEG, sensor->status.binning, sensor->status.vflip, sensor->status.hmirror, reg4514); return ret; } static int set_framesize(sensor_t *sensor, framesize_t framesize) { int ret = 0; sensor->status.framesize = framesize; ret = write_regs(sensor->slv_addr, sensor_default_regs); if (framesize == FRAMESIZE_QVGA) { ESP_LOGD(TAG, "Set FRAMESIZE_QVGA"); ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA); #if CONFIG_NT99141_SUPPORT_XSKIP ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: xskip mode"); ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA_xskip); #elif CONFIG_NT99141_SUPPORT_CROP ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: crop mode"); ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA_crop); #endif } else if (framesize == FRAMESIZE_VGA) { ESP_LOGD(TAG, "Set FRAMESIZE_VGA"); // ret = write_regs(sensor->slv_addr, sensor_framesize_VGA); ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_xyskip);// Resolution:640*360 This configuration is equally-scaled without deforming #ifdef CONFIG_NT99141_SUPPORT_XSKIP ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: xskip mode"); ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_xskip); #elif CONFIG_NT99141_SUPPORT_CROP ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: crop mode"); ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_crop); #endif } else if (framesize >= FRAMESIZE_HD) { ESP_LOGD(TAG, "Set FRAMESIZE_HD"); ret = write_regs(sensor->slv_addr, sensor_framesize_HD); } else { ESP_LOGD(TAG, "Dont suppost this size, Set FRAMESIZE_VGA"); ret = write_regs(sensor->slv_addr, sensor_framesize_VGA); } return 0; } static int set_hmirror(sensor_t *sensor, int enable) { int ret = 0; sensor->status.hmirror = enable; ret = set_image_options(sensor); if (ret == 0) { ESP_LOGD(TAG, "Set h-mirror to: %d", enable); } return ret; } static int set_vflip(sensor_t *sensor, int enable) { int ret = 0; sensor->status.vflip = enable; ret = set_image_options(sensor); if (ret == 0) { ESP_LOGD(TAG, "Set v-flip to: %d", enable); } return ret; } static int set_quality(sensor_t *sensor, int qs) { int ret = 0; ret = write_reg(sensor->slv_addr, COMPRESSION_CTRL07, qs & 0x3f); if (ret == 0) { sensor->status.quality = qs; ESP_LOGD(TAG, "Set quality to: %d", qs); } return ret; } static int set_colorbar(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR, enable); if (ret == 0) { sensor->status.colorbar = enable; ESP_LOGD(TAG, "Set colorbar to: %d", enable); } return ret; } static int set_gain_ctrl(sensor_t *sensor, int enable) { int ret = 0; ret = write_reg_bits(sensor->slv_addr, 0x32bb, 0x87, enable); if (ret == 0) { ESP_LOGD(TAG, "Set gain_ctrl to: %d", enable); sensor->status.agc = enable; } return ret; } static int set_exposure_ctrl(sensor_t *sensor, int enable) { int ret = 0; int data = 0; // ret = write_reg_bits(sensor->slv_addr, 0x32bb, 0x87, enable); data = read_reg(sensor->slv_addr, 0x3201); ESP_LOGD(TAG, "set_exposure_ctrl:enable"); if (enable) { ESP_LOGD(TAG, "set_exposure_ctrl:enable"); ret = write_reg(sensor->slv_addr, 0x3201, (1 << 5) | data); } else { ESP_LOGD(TAG, "set_exposure_ctrl:disable"); ret = write_reg(sensor->slv_addr, 0x3201, (~(1 << 5)) & data); } if (ret == 0) { ESP_LOGD(TAG, "Set exposure_ctrl to: %d", enable); sensor->status.aec = enable; } return ret; } static int set_whitebal(sensor_t *sensor, int enable) { int ret = 0; if (ret == 0) { ESP_LOGD(TAG, "Set awb to: %d", enable); sensor->status.awb = enable; } return ret; } //Advanced AWB static int set_dcw_dsp(sensor_t *sensor, int enable) { int ret = 0; if (ret == 0) { ESP_LOGD(TAG, "Set dcw to: %d", enable); sensor->status.dcw = enable; } return ret; } //night mode enable static int set_aec2(sensor_t *sensor, int enable) { int ret = 0; if (ret == 0) { ESP_LOGD(TAG, "Set aec2 to: %d", enable); sensor->status.aec2 = enable; } return ret; } static int set_bpc_dsp(sensor_t *sensor, int enable) { int ret = 0; if (ret == 0) { ESP_LOGD(TAG, "Set bpc to: %d", enable); sensor->status.bpc = enable; } return ret; } static int set_wpc_dsp(sensor_t *sensor, int enable) { int ret = 0; if (ret == 0) { ESP_LOGD(TAG, "Set wpc to: %d", enable); sensor->status.wpc = enable; } return ret; } //Gamma enable static int set_raw_gma_dsp(sensor_t *sensor, int enable) { int ret = 0; if (ret == 0) { ESP_LOGD(TAG, "Set raw_gma to: %d", enable); sensor->status.raw_gma = enable; } return ret; } static int set_lenc_dsp(sensor_t *sensor, int enable) { int ret = 0; if (ret == 0) { ESP_LOGD(TAG, "Set lenc to: %d", enable); sensor->status.lenc = enable; } return ret; } static int get_agc_gain(sensor_t *sensor) { ESP_LOGD(TAG, "get_agc_gain can not be configured at present"); return 0; } //real gain static int set_agc_gain(sensor_t *sensor, int gain) { ESP_LOGD(TAG, "set_agc_gain can not be configured at present"); // ESP_LOGD(TAG, "GAIN = %d\n", gain); int cnt = gain / 2; switch (cnt) { case 0: ESP_LOGD(TAG, "set_agc_gain: 1x"); write_reg(sensor->slv_addr, 0X301D, 0X00); break; case 1: ESP_LOGD(TAG,"set_agc_gain: 2x"); write_reg(sensor->slv_addr, 0X301D, 0X0F); break; case 2: ESP_LOGD(TAG,"set_agc_gain: 4x"); write_reg(sensor->slv_addr, 0X301D, 0X2F); break; case 3: ESP_LOGD(TAG,"set_agc_gain: 6x"); write_reg(sensor->slv_addr, 0X301D, 0X37); break; case 4: ESP_LOGD(TAG,"set_agc_gain: 8x"); write_reg(sensor->slv_addr, 0X301D, 0X3F); break; default: ESP_LOGD(TAG,"fail set_agc_gain"); break; } return 0; } static int get_aec_value(sensor_t *sensor) { ESP_LOGD(TAG, "get_aec_value can not be configured at present"); return 0; } static int set_aec_value(sensor_t *sensor, int value) { ESP_LOGD(TAG, "set_aec_value can not be configured at present"); int ret = 0; // ESP_LOGD(TAG, " set_aec_value to: %d", value); ret = write_reg_bits(sensor->slv_addr, 0x3012, 0x00, (value >> 8) & 0xff); ret = write_reg_bits(sensor->slv_addr, 0x3013, 0x01, value & 0xff); if (ret == 0) { ESP_LOGD(TAG, " set_aec_value to: %d", value); // sensor->status.aec = enable; } return ret; } static int set_ae_level(sensor_t *sensor, int level) { ESP_LOGD(TAG, "set_ae_level can not be configured at present"); int ret = 0; if (level < 0) { level = 0; } else if (level > 9) { level = 9; } for (int i = 0; i < 5; i++) { ret += write_reg(sensor->slv_addr, sensor_ae_level[ 5 * level + i ][0], sensor_ae_level[5 * level + i ][1]); } if (ret) { ESP_LOGE(TAG, " fail to set ae level: %d", ret); } return 0; } static int set_wb_mode(sensor_t *sensor, int mode) { int ret = 0; if (mode < 0 || mode > 4) { return -1; } ret = write_reg(sensor->slv_addr, 0x3201, (mode != 0)); if (ret) { return ret; } switch (mode) { case 1://Sunny ret = write_reg16(sensor->slv_addr, 0x3290, 0x01) || write_reg16(sensor->slv_addr, 0x3291, 0x38) || write_reg16(sensor->slv_addr, 0x3296, 0x01) || write_reg16(sensor->slv_addr, 0x3297, 0x68) || write_reg16(sensor->slv_addr, 0x3060, 0x01); break; case 2://Cloudy ret = write_reg16(sensor->slv_addr, 0x3290, 0x01) || write_reg16(sensor->slv_addr, 0x3291, 0x51) || write_reg16(sensor->slv_addr, 0x3296, 0x01) || write_reg16(sensor->slv_addr, 0x3297, 0x00) || write_reg16(sensor->slv_addr, 0x3060, 0x01); break; case 3://INCANDESCENCE] ret = write_reg16(sensor->slv_addr, 0x3290, 0x01) || write_reg16(sensor->slv_addr, 0x3291, 0x30) || write_reg16(sensor->slv_addr, 0x3296, 0x01) || write_reg16(sensor->slv_addr, 0x3297, 0xCB) || write_reg16(sensor->slv_addr, 0x3060, 0x01); break; case 4://FLUORESCENT ret = write_reg16(sensor->slv_addr, 0x3290, 0x01) || write_reg16(sensor->slv_addr, 0x3291, 0x70) || write_reg16(sensor->slv_addr, 0x3296, 0x01) || write_reg16(sensor->slv_addr, 0x3297, 0xFF) || write_reg16(sensor->slv_addr, 0x3060, 0x01); break; default://AUTO break; } if (ret == 0) { ESP_LOGD(TAG, "Set wb_mode to: %d", mode); sensor->status.wb_mode = mode; } return ret; } static int set_awb_gain_dsp(sensor_t *sensor, int enable) { int ret = 0; int old_mode = sensor->status.wb_mode; int mode = enable ? old_mode : 0; ret = set_wb_mode(sensor, mode); if (ret == 0) { sensor->status.wb_mode = old_mode; ESP_LOGD(TAG, "Set awb_gain to: %d", enable); sensor->status.awb_gain = enable; } return ret; } static int set_special_effect(sensor_t *sensor, int effect) { int ret = 0; if (effect < 0 || effect > 6) { return -1; } uint8_t *regs = (uint8_t *)sensor_special_effects[effect]; ret = write_reg(sensor->slv_addr, 0x32F1, regs[0]) || write_reg(sensor->slv_addr, 0x32F4, regs[1]) || write_reg(sensor->slv_addr, 0x32F5, regs[2]) || write_reg(sensor->slv_addr, 0x3060, regs[3]); if (ret == 0) { ESP_LOGD(TAG, "Set special_effect to: %d", effect); sensor->status.special_effect = effect; } return ret; } static int set_brightness(sensor_t *sensor, int level) { int ret = 0; uint8_t value = 0; bool negative = false; switch (level) { case 3: value = 0xA0; break; case 2: value = 0x90; break; case 1: value = 0x88; break; case -1: value = 0x78; negative = true; break; case -2: value = 0x70; negative = true; break; case -3: value = 0x60; negative = true; break; default: // 0 break; } ret = write_reg(sensor->slv_addr, 0x32F2, value); if (ret == 0) { ESP_LOGD(TAG, "Set brightness to: %d", level); sensor->status.brightness = level; } return ret; } static int set_contrast(sensor_t *sensor, int level) { int ret = 0; uint8_t value1 = 0, value2 = 0 ; bool negative = false; switch (level) { case 3: value1 = 0xD0; value2 = 0xB0; break; case 2: value1 = 0xE0; value2 = 0xA0; break; case 1: value1 = 0xF0; value2 = 0x90; break; case 0: value1 = 0x00; value2 = 0x80; break; case -1: value1 = 0x10; value2 = 0x70; break; case -2: value1 = 0x20; value2 = 0x60; break; case -3: value1 = 0x30; value2 = 0x50; break; default: // 0 break; } ret = write_reg(sensor->slv_addr, 0x32FC, value1); ret = write_reg(sensor->slv_addr, 0x32F2, value2); ret = write_reg(sensor->slv_addr, 0x3060, 0x01); if (ret == 0) { ESP_LOGD(TAG, "Set contrast to: %d", level); sensor->status.contrast = level; } return ret; } static int set_saturation(sensor_t *sensor, int level) { int ret = 0; if (level > 4 || level < -4) { return -1; } uint8_t *regs = (uint8_t *)sensor_saturation_levels[level + 4]; { ret = write_reg(sensor->slv_addr, 0x32F3, regs[0]); if (ret) { return ret; } } if (ret == 0) { ESP_LOGD(TAG, "Set saturation to: %d", level); sensor->status.saturation = level; } return ret; } static int set_sharpness(sensor_t *sensor, int level) { int ret = 0; if (level > 3 || level < -3) { return -1; } uint8_t mt_offset_2 = (level + 3) * 8; uint8_t mt_offset_1 = mt_offset_2 + 1; ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x40, false)//0x40 means auto || write_reg(sensor->slv_addr, 0x5300, 0x10) || write_reg(sensor->slv_addr, 0x5301, 0x10) || write_reg(sensor->slv_addr, 0x5302, mt_offset_1) || write_reg(sensor->slv_addr, 0x5303, mt_offset_2) || write_reg(sensor->slv_addr, 0x5309, 0x10) || write_reg(sensor->slv_addr, 0x530a, 0x10) || write_reg(sensor->slv_addr, 0x530b, 0x04) || write_reg(sensor->slv_addr, 0x530c, 0x06); if (ret == 0) { ESP_LOGD(TAG, "Set sharpness to: %d", level); sensor->status.sharpness = level; } return ret; } static int set_gainceiling(sensor_t *sensor, gainceiling_t level) { ESP_LOGD(TAG, "set_gainceiling can not be configured at present"); return 0; } static int get_denoise(sensor_t *sensor) { return (read_reg(sensor->slv_addr, 0x5306) / 4) + 1; } static int set_denoise(sensor_t *sensor, int level) { ESP_LOGD(TAG, "set_denoise can not be configured at present"); return 0; } static int get_reg(sensor_t *sensor, int reg, int mask) { int ret = 0, ret2 = 0; if (mask > 0xFF) { ret = read_reg16(sensor->slv_addr, reg); if (ret >= 0 && mask > 0xFFFF) { ret2 = read_reg(sensor->slv_addr, reg + 2); if (ret2 >= 0) { ret = (ret << 8) | ret2 ; } else { ret = ret2; } } } else { ret = read_reg(sensor->slv_addr, reg); } if (ret > 0) { ret &= mask; } return ret; } static int set_reg(sensor_t *sensor, int reg, int mask, int value) { int ret = 0, ret2 = 0; if (mask > 0xFF) { ret = read_reg16(sensor->slv_addr, reg); if (ret >= 0 && mask > 0xFFFF) { ret2 = read_reg(sensor->slv_addr, reg + 2); if (ret2 >= 0) { ret = (ret << 8) | ret2 ; } else { ret = ret2; } } } else { ret = read_reg(sensor->slv_addr, reg); } if (ret < 0) { return ret; } value = (ret & ~mask) | (value & mask); if (mask > 0xFFFF) { ret = write_reg16(sensor->slv_addr, reg, value >> 8); if (ret >= 0) { ret = write_reg(sensor->slv_addr, reg + 2, value & 0xFF); } } else if (mask > 0xFF) { ret = write_reg16(sensor->slv_addr, reg, value); } else { ret = write_reg(sensor->slv_addr, reg, value); } return ret; } static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning) { int ret = 0; ret = write_addr_reg(sensor->slv_addr, X_ADDR_ST_H, startX, startY) || write_addr_reg(sensor->slv_addr, X_ADDR_END_H, endX, endY) || write_addr_reg(sensor->slv_addr, X_OFFSET_H, offsetX, offsetY) || write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, totalX, totalY) || write_addr_reg(sensor->slv_addr, X_OUTPUT_SIZE_H, outputX, outputY); if (!ret) { sensor->status.scale = scale; sensor->status.binning = binning; ret = set_image_options(sensor); } return ret; } static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div) { return set_pll(sensor, bypass > 0, multiplier, sys_div, pre_div, root_2x > 0, seld5, pclk_manual > 0, pclk_div); } esp_err_t xclk_timer_conf(int ledc_timer, int xclk_freq_hz); static int set_xclk(sensor_t *sensor, int timer, int xclk) { int ret = 0; if (xclk > 10) { ESP_LOGE(TAG, "only XCLK under 10MHz is supported, and XCLK is now set to 10M"); xclk = 10; } sensor->xclk_freq_hz = xclk * 1000000U; ret = xclk_timer_conf(timer, sensor->xclk_freq_hz); return ret; } static int init_status(sensor_t *sensor) { sensor->status.brightness = 0; sensor->status.contrast = 0; sensor->status.saturation = 0; sensor->status.sharpness = (read_reg(sensor->slv_addr, 0x3301)); sensor->status.denoise = get_denoise(sensor); sensor->status.ae_level = 0; sensor->status.gainceiling = read_reg16(sensor->slv_addr, 0x32F0) & 0xFF; sensor->status.awb = check_reg_mask(sensor->slv_addr, ISP_CONTROL_01, 0x10); sensor->status.dcw = !check_reg_mask(sensor->slv_addr, 0x5183, 0x80); sensor->status.agc = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN); sensor->status.aec = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN); sensor->status.hmirror = check_reg_mask(sensor->slv_addr, TIMING_TC_REG21, TIMING_TC_REG21_HMIRROR); sensor->status.vflip = check_reg_mask(sensor->slv_addr, TIMING_TC_REG20, TIMING_TC_REG20_VFLIP); sensor->status.colorbar = check_reg_mask(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR); sensor->status.bpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x04); sensor->status.wpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x02); sensor->status.raw_gma = check_reg_mask(sensor->slv_addr, 0x5000, 0x20); sensor->status.lenc = check_reg_mask(sensor->slv_addr, 0x5000, 0x80); sensor->status.quality = read_reg(sensor->slv_addr, COMPRESSION_CTRL07) & 0x3f; sensor->status.special_effect = 0; sensor->status.wb_mode = 0; sensor->status.awb_gain = check_reg_mask(sensor->slv_addr, 0x3000, 0x01); sensor->status.agc_gain = get_agc_gain(sensor); sensor->status.aec_value = get_aec_value(sensor); sensor->status.aec2 = check_reg_mask(sensor->slv_addr, 0x3000, 0x04); return 0; } int NT99141_init(sensor_t *sensor) { sensor->reset = reset; sensor->set_pixformat = set_pixformat; sensor->set_framesize = set_framesize; sensor->set_contrast = set_contrast; sensor->set_brightness = set_brightness; sensor->set_saturation = set_saturation; sensor->set_sharpness = set_sharpness; sensor->set_gainceiling = set_gainceiling; sensor->set_quality = set_quality; sensor->set_colorbar = set_colorbar; sensor->set_gain_ctrl = set_gain_ctrl; sensor->set_exposure_ctrl = set_exposure_ctrl; sensor->set_whitebal = set_whitebal; sensor->set_hmirror = set_hmirror; sensor->set_vflip = set_vflip; sensor->init_status = init_status; sensor->set_aec2 = set_aec2; sensor->set_aec_value = set_aec_value; sensor->set_special_effect = set_special_effect; sensor->set_wb_mode = set_wb_mode; sensor->set_ae_level = set_ae_level; sensor->set_dcw = set_dcw_dsp; sensor->set_bpc = set_bpc_dsp; sensor->set_wpc = set_wpc_dsp; sensor->set_awb_gain = set_awb_gain_dsp; sensor->set_agc_gain = set_agc_gain; sensor->set_raw_gma = set_raw_gma_dsp; sensor->set_lenc = set_lenc_dsp; sensor->set_denoise = set_denoise; sensor->get_reg = get_reg; sensor->set_reg = set_reg; sensor->set_res_raw = set_res_raw; sensor->set_pll = _set_pll; sensor->set_xclk = set_xclk; return 0; }