You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1038 lines
30 KiB

/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV3660 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "ov3660.h"
#include "ov3660_regs.h"
#include "ov3660_settings.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "ov3660";
#endif
//#define REG_DEBUG_ON
static int read_reg(uint8_t slv_addr, const uint16_t reg){
int ret = SCCB_Read16(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0) {
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask){
return (read_reg(slv_addr, reg) & mask) == mask;
}
static int read_reg16(uint8_t slv_addr, const uint16_t reg){
int ret = 0, ret2 = 0;
ret = read_reg(slv_addr, reg);
if (ret >= 0) {
ret = (ret & 0xFF) << 8;
ret2 = read_reg(slv_addr, reg+1);
if (ret2 < 0) {
ret = ret2;
} else {
ret |= ret2 & 0xFF;
}
}
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value){
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write16(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0) {
return old_value;
}
if ((uint8_t)old_value != value) {
ESP_LOGI(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write16(slv_addr, reg, value);
} else {
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write16(slv_addr, reg, value);//maybe not?
}
if (ret < 0) {
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if(ret < 0) {
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL) {
if (regs[i][0] == REG_DLY) {
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
} else {
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value)
{
if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) {
return -1;
}
return 0;
}
static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value)
{
if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) {
return -1;
}
return 0;
}
#define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, enable?mask:0)
static int calc_sysclk(int xclk, bool pll_bypass, int pll_multiplier, int pll_sys_div, int pll_pre_div, bool pll_root_2x, int pll_seld5, bool pclk_manual, int pclk_div)
{
const int pll_pre_div2x_map[] = { 2, 3, 4, 6 };//values are multiplied by two to avoid floats
const int pll_seld52x_map[] = { 2, 2, 4, 5 };
if(!pll_sys_div) {
pll_sys_div = 1;
}
int pll_pre_div2x = pll_pre_div2x_map[pll_pre_div];
int pll_root_div = pll_root_2x?2:1;
int pll_seld52x = pll_seld52x_map[pll_seld5];
int VCO = (xclk / 1000) * pll_multiplier * pll_root_div * 2 / pll_pre_div2x;
int PLLCLK = pll_bypass?(xclk):(VCO * 1000 * 2 / pll_sys_div / pll_seld52x);
int PCLK = PLLCLK / 2 / ((pclk_manual && pclk_div)?pclk_div:1);
int SYSCLK = PLLCLK / 4;
ESP_LOGI(TAG, "Calculated VCO: %d Hz, PLLCLK: %d Hz, SYSCLK: %d Hz, PCLK: %d Hz", VCO*1000, PLLCLK, SYSCLK, PCLK);
return SYSCLK;
}
static int set_pll(sensor_t *sensor, bool bypass, uint8_t multiplier, uint8_t sys_div, uint8_t pre_div, bool root_2x, uint8_t seld5, bool pclk_manual, uint8_t pclk_div){
int ret = 0;
if(multiplier > 31 || sys_div > 15 || pre_div > 3 || pclk_div > 31 || seld5 > 3){
ESP_LOGE(TAG, "Invalid arguments");
return -1;
}
calc_sysclk(sensor->xclk_freq_hz, bypass, multiplier, sys_div, pre_div, root_2x, seld5, pclk_manual, pclk_div);
ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL0, bypass?0x80:0x00);
if (ret == 0) {
ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL1, multiplier & 0x1f);
}
if (ret == 0) {
ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL2, 0x10 | (sys_div & 0x0f));
}
if (ret == 0) {
ret = write_reg(sensor->slv_addr, SC_PLLS_CTRL3, (pre_div & 0x3) << 4 | seld5 | (root_2x?0x40:0x00));
}
if (ret == 0) {
ret = write_reg(sensor->slv_addr, PCLK_RATIO, pclk_div & 0x1f);
}
if (ret == 0) {
ret = write_reg(sensor->slv_addr, VFIFO_CTRL0C, pclk_manual?0x22:0x20);
}
if(ret){
ESP_LOGE(TAG, "set_sensor_pll FAILED!");
}
return ret;
}
static int set_ae_level(sensor_t *sensor, int level);
static int reset(sensor_t *sensor)
{
int ret = 0;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, SYSTEM_CTROL0, 0x82);
if(ret){
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (ret == 0) {
ESP_LOGD(TAG, "Camera defaults loaded");
ret = set_ae_level(sensor, 0);
vTaskDelay(100 / portTICK_PERIOD_MS);
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
const uint16_t (*regs)[2];
switch (pixformat) {
case PIXFORMAT_YUV422:
regs = sensor_fmt_yuv422;
break;
case PIXFORMAT_GRAYSCALE:
regs = sensor_fmt_grayscale;
break;
case PIXFORMAT_RGB565:
case PIXFORMAT_RGB888:
regs = sensor_fmt_rgb565;
break;
case PIXFORMAT_JPEG:
regs = sensor_fmt_jpeg;
break;
case PIXFORMAT_RAW:
regs = sensor_fmt_raw;
break;
default:
ESP_LOGE(TAG, "Unsupported pixformat: %u", pixformat);
return -1;
}
ret = write_regs(sensor->slv_addr, regs);
if(ret == 0) {
sensor->pixformat = pixformat;
ESP_LOGD(TAG, "Set pixformat to: %u", pixformat);
}
return ret;
}
static int set_image_options(sensor_t *sensor)
{
int ret = 0;
uint8_t reg20 = 0;
uint8_t reg21 = 0;
uint8_t reg4514 = 0;
uint8_t reg4514_test = 0;
// compression
if (sensor->pixformat == PIXFORMAT_JPEG) {
reg21 |= 0x20;
}
// binning
if (sensor->status.binning) {
reg20 |= 0x01;
reg21 |= 0x01;
reg4514_test |= 4;
} else {
reg20 |= 0x40;
}
// V-Flip
if (sensor->status.vflip) {
reg20 |= 0x06;
reg4514_test |= 1;
}
// H-Mirror
if (sensor->status.hmirror) {
reg21 |= 0x06;
reg4514_test |= 2;
}
switch (reg4514_test) {
//no binning
case 0: reg4514 = 0x88; break;//normal
case 1: reg4514 = 0x88; break;//v-flip
case 2: reg4514 = 0xbb; break;//h-mirror
case 3: reg4514 = 0xbb; break;//v-flip+h-mirror
//binning
case 4: reg4514 = 0xaa; break;//normal
case 5: reg4514 = 0xbb; break;//v-flip
case 6: reg4514 = 0xbb; break;//h-mirror
case 7: reg4514 = 0xaa; break;//v-flip+h-mirror
}
if(write_reg(sensor->slv_addr, TIMING_TC_REG20, reg20)
|| write_reg(sensor->slv_addr, TIMING_TC_REG21, reg21)
|| write_reg(sensor->slv_addr, 0x4514, reg4514)){
ESP_LOGE(TAG, "Setting Image Options Failed");
ret = -1;
}
if (sensor->status.binning) {
ret = write_reg(sensor->slv_addr, 0x4520, 0x0b)
|| write_reg(sensor->slv_addr, X_INCREMENT, 0x31)//odd:3, even: 1
|| write_reg(sensor->slv_addr, Y_INCREMENT, 0x31);//odd:3, even: 1
} else {
ret = write_reg(sensor->slv_addr, 0x4520, 0xb0)
|| write_reg(sensor->slv_addr, X_INCREMENT, 0x11)//odd:1, even: 1
|| write_reg(sensor->slv_addr, Y_INCREMENT, 0x11);//odd:1, even: 1
}
ESP_LOGD(TAG, "Set Image Options: Compression: %u, Binning: %u, V-Flip: %u, H-Mirror: %u, Reg-4514: 0x%02x",
sensor->pixformat == PIXFORMAT_JPEG, sensor->status.binning, sensor->status.vflip, sensor->status.hmirror, reg4514);
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
if(framesize > FRAMESIZE_QXGA){
ESP_LOGW(TAG, "Invalid framesize: %u", framesize);
framesize = FRAMESIZE_QXGA;
}
framesize_t old_framesize = sensor->status.framesize;
sensor->status.framesize = framesize;
uint16_t w = resolution[framesize].width;
uint16_t h = resolution[framesize].height;
aspect_ratio_t ratio = resolution[sensor->status.framesize].aspect_ratio;
ratio_settings_t settings = ratio_table[ratio];
sensor->status.binning = (w <= (settings.max_width / 2) && h <= (settings.max_height / 2));
sensor->status.scale = !((w == settings.max_width && h == settings.max_height)
|| (w == (settings.max_width / 2) && h == (settings.max_height / 2)));
ret = write_addr_reg(sensor->slv_addr, X_ADDR_ST_H, settings.start_x, settings.start_y)
|| write_addr_reg(sensor->slv_addr, X_ADDR_END_H, settings.end_x, settings.end_y)
|| write_addr_reg(sensor->slv_addr, X_OUTPUT_SIZE_H, w, h);
if (ret) {
goto fail;
}
if (sensor->status.binning) {
ret = write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, settings.total_x, (settings.total_y / 2) + 1)
|| write_addr_reg(sensor->slv_addr, X_OFFSET_H, 8, 2);
} else {
ret = write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, settings.total_x, settings.total_y)
|| write_addr_reg(sensor->slv_addr, X_OFFSET_H, 16, 6);
}
if (ret == 0) {
ret = write_reg_bits(sensor->slv_addr, ISP_CONTROL_01, 0x20, sensor->status.scale);
}
if (ret == 0) {
ret = set_image_options(sensor);
}
if (ret) {
goto fail;
}
if (sensor->pixformat == PIXFORMAT_JPEG) {
if (framesize == FRAMESIZE_QXGA || sensor->xclk_freq_hz == 16000000) {
//40MHz SYSCLK and 10MHz PCLK
ret = set_pll(sensor, false, 24, 1, 3, false, 0, true, 8);
} else {
//50MHz SYSCLK and 10MHz PCLK
ret = set_pll(sensor, false, 30, 1, 3, false, 0, true, 10);
}
} else {
//tuned for 16MHz XCLK and 8MHz PCLK
if (framesize > FRAMESIZE_HVGA) {
//8MHz SYSCLK and 8MHz PCLK (4.44 FPS)
ret = set_pll(sensor, false, 4, 1, 0, false, 2, true, 2);
} else if (framesize >= FRAMESIZE_QVGA) {
//16MHz SYSCLK and 8MHz PCLK (10.25 FPS)
ret = set_pll(sensor, false, 8, 1, 0, false, 2, true, 4);
} else {
//32MHz SYSCLK and 8MHz PCLK (17.77 FPS)
ret = set_pll(sensor, false, 8, 1, 0, false, 0, true, 8);
}
}
if (ret == 0) {
ESP_LOGD(TAG, "Set framesize to: %ux%u", w, h);
}
return ret;
fail:
sensor->status.framesize = old_framesize;
ESP_LOGE(TAG, "Setting framesize to: %ux%u failed", w, h);
return ret;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.hmirror = enable;
ret = set_image_options(sensor);
if (ret == 0) {
ESP_LOGD(TAG, "Set h-mirror to: %d", enable);
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.vflip = enable;
ret = set_image_options(sensor);
if (ret == 0) {
ESP_LOGD(TAG, "Set v-flip to: %d", enable);
}
return ret;
}
static int set_quality(sensor_t *sensor, int qs)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, COMPRESSION_CTRL07, qs & 0x3f);
if (ret == 0) {
sensor->status.quality = qs;
ESP_LOGD(TAG, "Set quality to: %d", qs);
}
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR, enable);
if (ret == 0) {
sensor->status.colorbar = enable;
ESP_LOGD(TAG, "Set colorbar to: %d", enable);
}
return ret;
}
static int set_gain_ctrl(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN, !enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set gain_ctrl to: %d", enable);
sensor->status.agc = enable;
}
return ret;
}
static int set_exposure_ctrl(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN, !enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set exposure_ctrl to: %d", enable);
sensor->status.aec = enable;
}
return ret;
}
static int set_whitebal(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, ISP_CONTROL_01, 0x01, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set awb to: %d", enable);
sensor->status.awb = enable;
}
return ret;
}
//Advanced AWB
static int set_dcw_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5183, 0x80, !enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set dcw to: %d", enable);
sensor->status.dcw = enable;
}
return ret;
}
//night mode enable
static int set_aec2(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x3a00, 0x04, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set aec2 to: %d", enable);
sensor->status.aec2 = enable;
}
return ret;
}
static int set_bpc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x04, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set bpc to: %d", enable);
sensor->status.bpc = enable;
}
return ret;
}
static int set_wpc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x02, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set wpc to: %d", enable);
sensor->status.wpc = enable;
}
return ret;
}
//Gamma enable
static int set_raw_gma_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x20, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set raw_gma to: %d", enable);
sensor->status.raw_gma = enable;
}
return ret;
}
static int set_lenc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x5000, 0x80, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set lenc to: %d", enable);
sensor->status.lenc = enable;
}
return ret;
}
static int get_agc_gain(sensor_t *sensor)
{
int ra = read_reg(sensor->slv_addr, 0x350a);
if (ra < 0) {
return 0;
}
int rb = read_reg(sensor->slv_addr, 0x350b);
if (rb < 0) {
return 0;
}
int res = (rb & 0xF0) >> 4 | (ra & 0x03) << 4;
if (rb & 0x0F) {
res += 1;
}
return res;
}
//real gain
static int set_agc_gain(sensor_t *sensor, int gain)
{
int ret = 0;
if(gain < 0) {
gain = 0;
} else if(gain > 64) {
gain = 64;
}
//gain value is 6.4 bits float
//in order to use the max range, we deduct 1/16
int gainv = gain << 4;
if(gainv){
gainv -= 1;
}
ret = write_reg(sensor->slv_addr, 0x350a, gainv >> 8) || write_reg(sensor->slv_addr, 0x350b, gainv & 0xff);
if (ret == 0) {
ESP_LOGD(TAG, "Set agc_gain to: %d", gain);
sensor->status.agc_gain = gain;
}
return ret;
}
static int get_aec_value(sensor_t *sensor)
{
int ra = read_reg(sensor->slv_addr, 0x3500);
if (ra < 0) {
return 0;
}
int rb = read_reg(sensor->slv_addr, 0x3501);
if (rb < 0) {
return 0;
}
int rc = read_reg(sensor->slv_addr, 0x3502);
if (rc < 0) {
return 0;
}
int res = (ra & 0x0F) << 12 | (rb & 0xFF) << 4 | (rc & 0xF0) >> 4;
return res;
}
static int set_aec_value(sensor_t *sensor, int value)
{
int ret = 0, max_val = 0;
max_val = read_reg16(sensor->slv_addr, 0x380e);
if (max_val < 0) {
ESP_LOGE(TAG, "Could not read max aec_value");
return -1;
}
if (value > max_val) {
value =max_val;
}
ret = write_reg(sensor->slv_addr, 0x3500, (value >> 12) & 0x0F)
|| write_reg(sensor->slv_addr, 0x3501, (value >> 4) & 0xFF)
|| write_reg(sensor->slv_addr, 0x3502, (value << 4) & 0xF0);
if (ret == 0) {
ESP_LOGD(TAG, "Set aec_value to: %d / %d", value, max_val);
sensor->status.aec_value = value;
}
return ret;
}
static int set_ae_level(sensor_t *sensor, int level)
{
int ret = 0;
if (level < -5 || level > 5) {
return -1;
}
//good targets are between 5 and 115
int target_level = ((level + 5) * 10) + 5;
int level_high, level_low;
int fast_high, fast_low;
level_low = target_level * 23 / 25; //0.92 (0.46)
level_high = target_level * 27 / 25; //1.08 (2.08)
fast_low = level_low >> 1;
fast_high = level_high << 1;
if(fast_high>255) {
fast_high = 255;
}
ret = write_reg(sensor->slv_addr, 0x3a0f, level_high)
|| write_reg(sensor->slv_addr, 0x3a10, level_low)
|| write_reg(sensor->slv_addr, 0x3a1b, level_high)
|| write_reg(sensor->slv_addr, 0x3a1e, level_low)
|| write_reg(sensor->slv_addr, 0x3a11, fast_high)
|| write_reg(sensor->slv_addr, 0x3a1f, fast_low);
if (ret == 0) {
ESP_LOGD(TAG, "Set ae_level to: %d", level);
sensor->status.ae_level = level;
}
return ret;
}
static int set_wb_mode(sensor_t *sensor, int mode)
{
int ret = 0;
if (mode < 0 || mode > 4) {
return -1;
}
ret = write_reg(sensor->slv_addr, 0x3406, (mode != 0));
if (ret) {
return ret;
}
switch (mode) {
case 1://Sunny
ret = write_reg16(sensor->slv_addr, 0x3400, 0x5e0) //AWB R GAIN
|| write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN
|| write_reg16(sensor->slv_addr, 0x3404, 0x540);//AWB B GAIN
break;
case 2://Cloudy
ret = write_reg16(sensor->slv_addr, 0x3400, 0x650) //AWB R GAIN
|| write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN
|| write_reg16(sensor->slv_addr, 0x3404, 0x4f0);//AWB B GAIN
break;
case 3://Office
ret = write_reg16(sensor->slv_addr, 0x3400, 0x520) //AWB R GAIN
|| write_reg16(sensor->slv_addr, 0x3402, 0x410) //AWB G GAIN
|| write_reg16(sensor->slv_addr, 0x3404, 0x660);//AWB B GAIN
break;
case 4://HOME
ret = write_reg16(sensor->slv_addr, 0x3400, 0x420) //AWB R GAIN
|| write_reg16(sensor->slv_addr, 0x3402, 0x3f0) //AWB G GAIN
|| write_reg16(sensor->slv_addr, 0x3404, 0x710);//AWB B GAIN
break;
default://AUTO
break;
}
if (ret == 0) {
ESP_LOGD(TAG, "Set wb_mode to: %d", mode);
sensor->status.wb_mode = mode;
}
return ret;
}
static int set_awb_gain_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
int old_mode = sensor->status.wb_mode;
int mode = enable?old_mode:0;
ret = set_wb_mode(sensor, mode);
if (ret == 0) {
sensor->status.wb_mode = old_mode;
ESP_LOGD(TAG, "Set awb_gain to: %d", enable);
sensor->status.awb_gain = enable;
}
return ret;
}
static int set_special_effect(sensor_t *sensor, int effect)
{
int ret=0;
if (effect < 0 || effect > 6) {
return -1;
}
uint8_t * regs = (uint8_t *)sensor_special_effects[effect];
ret = write_reg(sensor->slv_addr, 0x5580, regs[0])
|| write_reg(sensor->slv_addr, 0x5583, regs[1])
|| write_reg(sensor->slv_addr, 0x5584, regs[2])
|| write_reg(sensor->slv_addr, 0x5003, regs[3]);
if (ret == 0) {
ESP_LOGD(TAG, "Set special_effect to: %d", effect);
sensor->status.special_effect = effect;
}
return ret;
}
static int set_brightness(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t value = 0;
bool negative = false;
switch (level) {
case 3:
value = 0x30;
break;
case 2:
value = 0x20;
break;
case 1:
value = 0x10;
break;
case -1:
value = 0x10;
negative = true;
break;
case -2:
value = 0x20;
negative = true;
break;
case -3:
value = 0x30;
negative = true;
break;
default: // 0
break;
}
ret = write_reg(sensor->slv_addr, 0x5587, value);
if (ret == 0) {
ret = write_reg_bits(sensor->slv_addr, 0x5588, 0x08, negative);
}
if (ret == 0) {
ESP_LOGD(TAG, "Set brightness to: %d", level);
sensor->status.brightness = level;
}
return ret;
}
static int set_contrast(sensor_t *sensor, int level)
{
int ret = 0;
if(level > 3 || level < -3) {
return -1;
}
ret = write_reg(sensor->slv_addr, 0x5586, (level + 4) << 3);
if (ret == 0) {
ESP_LOGD(TAG, "Set contrast to: %d", level);
sensor->status.contrast = level;
}
return ret;
}
static int set_saturation(sensor_t *sensor, int level)
{
int ret = 0;
if(level > 4 || level < -4) {
return -1;
}
uint8_t * regs = (uint8_t *)sensor_saturation_levels[level+4];
for(int i=0; i<11; i++) {
ret = write_reg(sensor->slv_addr, 0x5381 + i, regs[i]);
if (ret) {
break;
}
}
if (ret == 0) {
ESP_LOGD(TAG, "Set saturation to: %d", level);
sensor->status.saturation = level;
}
return ret;
}
static int set_sharpness(sensor_t *sensor, int level)
{
int ret = 0;
if(level > 3 || level < -3) {
return -1;
}
uint8_t mt_offset_2 = (level + 3) * 8;
uint8_t mt_offset_1 = mt_offset_2 + 1;
ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x40, false)//0x40 means auto
|| write_reg(sensor->slv_addr, 0x5300, 0x10)
|| write_reg(sensor->slv_addr, 0x5301, 0x10)
|| write_reg(sensor->slv_addr, 0x5302, mt_offset_1)
|| write_reg(sensor->slv_addr, 0x5303, mt_offset_2)
|| write_reg(sensor->slv_addr, 0x5309, 0x10)
|| write_reg(sensor->slv_addr, 0x530a, 0x10)
|| write_reg(sensor->slv_addr, 0x530b, 0x04)
|| write_reg(sensor->slv_addr, 0x530c, 0x06);
if (ret == 0) {
ESP_LOGD(TAG, "Set sharpness to: %d", level);
sensor->status.sharpness = level;
}
return ret;
}
static int set_gainceiling(sensor_t *sensor, gainceiling_t level)
{
int ret = 0, l = (int)level;
ret = write_reg(sensor->slv_addr, 0x3A18, (l >> 8) & 3)
|| write_reg(sensor->slv_addr, 0x3A19, l & 0xFF);
if (ret == 0) {
ESP_LOGD(TAG, "Set gainceiling to: %d", l);
sensor->status.gainceiling = l;
}
return ret;
}
static int get_denoise(sensor_t *sensor)
{
if (!check_reg_mask(sensor->slv_addr, 0x5308, 0x10)) {
return 0;
}
return (read_reg(sensor->slv_addr, 0x5306) / 4) + 1;
}
static int set_denoise(sensor_t *sensor, int level)
{
int ret = 0;
if (level < 0 || level > 8) {
return -1;
}
ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x10, level > 0);
if (ret == 0 && level > 0) {
ret = write_reg(sensor->slv_addr, 0x5306, (level - 1) * 4);
}
if (ret == 0) {
ESP_LOGD(TAG, "Set denoise to: %d", level);
sensor->status.denoise = level;
}
return ret;
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = 0, ret2 = 0;
if(mask > 0xFF){
ret = read_reg16(sensor->slv_addr, reg);
if(ret >= 0 && mask > 0xFFFF){
ret2 = read_reg(sensor->slv_addr, reg+2);
if(ret2 >= 0){
ret = (ret << 8) | ret2 ;
} else {
ret = ret2;
}
}
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if(ret > 0){
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0, ret2 = 0;
if(mask > 0xFF){
ret = read_reg16(sensor->slv_addr, reg);
if(ret >= 0 && mask > 0xFFFF){
ret2 = read_reg(sensor->slv_addr, reg+2);
if(ret2 >= 0){
ret = (ret << 8) | ret2 ;
} else {
ret = ret2;
}
}
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if(ret < 0){
return ret;
}
value = (ret & ~mask) | (value & mask);
if(mask > 0xFFFF){
ret = write_reg16(sensor->slv_addr, reg, value >> 8);
if(ret >= 0){
ret = write_reg(sensor->slv_addr, reg+2, value & 0xFF);
}
} else if(mask > 0xFF){
ret = write_reg16(sensor->slv_addr, reg, value);
} else {
ret = write_reg(sensor->slv_addr, reg, value);
}
return ret;
}
static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning)
{
int ret = 0;
ret = write_addr_reg(sensor->slv_addr, X_ADDR_ST_H, startX, startY)
|| write_addr_reg(sensor->slv_addr, X_ADDR_END_H, endX, endY)
|| write_addr_reg(sensor->slv_addr, X_OFFSET_H, offsetX, offsetY)
|| write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, totalX, totalY)
|| write_addr_reg(sensor->slv_addr, X_OUTPUT_SIZE_H, outputX, outputY)
|| write_reg_bits(sensor->slv_addr, ISP_CONTROL_01, 0x20, scale);
if(!ret){
sensor->status.scale = scale;
sensor->status.binning = binning;
ret = set_image_options(sensor);
}
return ret;
}
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div)
{
return set_pll(sensor, bypass > 0, multiplier, sys_div, pre_div, root_2x > 0, seld5, pclk_manual > 0, pclk_div);
}
esp_err_t xclk_timer_conf(int ledc_timer, int xclk_freq_hz);
static int set_xclk(sensor_t *sensor, int timer, int xclk)
{
int ret = 0;
sensor->xclk_freq_hz = xclk * 1000000U;
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
return ret;
}
static int init_status(sensor_t *sensor)
{
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = (read_reg(sensor->slv_addr, 0x5303) / 8) - 3;
sensor->status.denoise = get_denoise(sensor);
sensor->status.ae_level = 0;
sensor->status.gainceiling = read_reg16(sensor->slv_addr, 0x3A18) & 0x3FF;
sensor->status.awb = check_reg_mask(sensor->slv_addr, ISP_CONTROL_01, 0x01);
sensor->status.dcw = !check_reg_mask(sensor->slv_addr, 0x5183, 0x80);
sensor->status.agc = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN);
sensor->status.aec = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN);
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, TIMING_TC_REG21, TIMING_TC_REG21_HMIRROR);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, TIMING_TC_REG20, TIMING_TC_REG20_VFLIP);
sensor->status.colorbar = check_reg_mask(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR);
sensor->status.bpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x04);
sensor->status.wpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x02);
sensor->status.raw_gma = check_reg_mask(sensor->slv_addr, 0x5000, 0x20);
sensor->status.lenc = check_reg_mask(sensor->slv_addr, 0x5000, 0x80);
sensor->status.quality = read_reg(sensor->slv_addr, COMPRESSION_CTRL07) & 0x3f;
sensor->status.special_effect = 0;
sensor->status.wb_mode = 0;
sensor->status.awb_gain = check_reg_mask(sensor->slv_addr, 0x3406, 0x01);
sensor->status.agc_gain = get_agc_gain(sensor);
sensor->status.aec_value = get_aec_value(sensor);
sensor->status.aec2 = check_reg_mask(sensor->slv_addr, 0x3a00, 0x04);
return 0;
}
int ov3660_init(sensor_t *sensor)
{
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_contrast;
sensor->set_brightness = set_brightness;
sensor->set_saturation = set_saturation;
sensor->set_sharpness = set_sharpness;
sensor->set_gainceiling = set_gainceiling;
sensor->set_quality = set_quality;
sensor->set_colorbar = set_colorbar;
sensor->set_gain_ctrl = set_gain_ctrl;
sensor->set_exposure_ctrl = set_exposure_ctrl;
sensor->set_whitebal = set_whitebal;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->init_status = init_status;
sensor->set_aec2 = set_aec2;
sensor->set_aec_value = set_aec_value;
sensor->set_special_effect = set_special_effect;
sensor->set_wb_mode = set_wb_mode;
sensor->set_ae_level = set_ae_level;
sensor->set_dcw = set_dcw_dsp;
sensor->set_bpc = set_bpc_dsp;
sensor->set_wpc = set_wpc_dsp;
sensor->set_awb_gain = set_awb_gain_dsp;
sensor->set_agc_gain = set_agc_gain;
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
sensor->set_denoise = set_denoise;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = set_res_raw;
sensor->set_pll = _set_pll;
sensor->set_xclk = set_xclk;
return 0;
}