You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1006 lines
25 KiB

/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* NT99141 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "nt99141.h"
#include "nt99141_regs.h"
#include "nt99141_settings.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char *TAG = "NT99141";
#endif
//#define REG_DEBUG_ON
static int read_reg(uint8_t slv_addr, const uint16_t reg)
{
int ret = SCCB_Read16(slv_addr, reg);
#ifdef REG_DEBUG_ON
if (ret < 0) {
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask)
{
return (read_reg(slv_addr, reg) & mask) == mask;
}
static int read_reg16(uint8_t slv_addr, const uint16_t reg)
{
int ret = 0, ret2 = 0;
ret = read_reg(slv_addr, reg);
if (ret >= 0) {
ret = (ret & 0xFF) << 8;
ret2 = read_reg(slv_addr, reg + 1);
if (ret2 < 0) {
ret = ret2;
} else {
ret |= ret2 & 0xFF;
}
}
return ret;
}
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value)
{
int ret = 0;
#ifndef REG_DEBUG_ON
ret = SCCB_Write16(slv_addr, reg, value);
#else
int old_value = read_reg(slv_addr, reg);
if (old_value < 0) {
return old_value;
}
if ((uint8_t)old_value != value) {
ESP_LOGD(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
ret = SCCB_Write16(slv_addr, reg, value);
} else {
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
ret = SCCB_Write16(slv_addr, reg, value);//maybe not?
}
if (ret < 0) {
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
}
#endif
return ret;
}
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = read_reg(slv_addr, reg);
if (ret < 0) {
return ret;
}
c_value = ret;
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = write_reg(slv_addr, reg, new_value);
return ret;
}
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
{
int i = 0, ret = 0;
while (!ret && regs[i][0] != REGLIST_TAIL) {
if (regs[i][0] == REG_DLY) {
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
} else {
ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
}
i++;
}
return ret;
}
static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value)
{
if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) {
return -1;
}
return 0;
}
static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value)
{
if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) {
return -1;
}
return 0;
}
#define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, enable?mask:0)
static int set_pll(sensor_t *sensor, bool bypass, uint8_t multiplier, uint8_t sys_div, uint8_t pre_div, bool root_2x, uint8_t seld5, bool pclk_manual, uint8_t pclk_div)
{
return -1;
}
static int set_ae_level(sensor_t *sensor, int level);
static int reset(sensor_t *sensor)
{
int ret = 0;
// Software Reset: clear all registers and reset them to their default values
ret = write_reg(sensor->slv_addr, SYSTEM_CTROL0, 0x01);
if (ret) {
ESP_LOGE(TAG, "Software Reset FAILED!");
return ret;
}
vTaskDelay(100 / portTICK_PERIOD_MS);
ret = write_regs(sensor->slv_addr, sensor_default_regs); //re-initial
if (ret == 0) {
ESP_LOGD(TAG, "Camera defaults loaded");
ret = set_ae_level(sensor, 0);
vTaskDelay(100 / portTICK_PERIOD_MS);
}
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
const uint16_t (*regs)[2];
switch (pixformat) {
case PIXFORMAT_YUV422:
regs = sensor_fmt_yuv422;
break;
case PIXFORMAT_GRAYSCALE:
regs = sensor_fmt_grayscale;
break;
case PIXFORMAT_RGB565:
case PIXFORMAT_RGB888:
regs = sensor_fmt_rgb565;
break;
case PIXFORMAT_JPEG:
regs = sensor_fmt_jpeg;
break;
case PIXFORMAT_RAW:
regs = sensor_fmt_raw;
break;
default:
ESP_LOGE(TAG, "Unsupported pixformat: %u", pixformat);
return -1;
}
ret = write_regs(sensor->slv_addr, regs);
if (ret == 0) {
sensor->pixformat = pixformat;
ESP_LOGD(TAG, "Set pixformat to: %u", pixformat);
}
return ret;
}
static int set_image_options(sensor_t *sensor)
{
int ret = 0;
uint8_t reg20 = 0;
uint8_t reg21 = 0;
uint8_t reg4514 = 0;
uint8_t reg4514_test = 0;
// V-Flip
if (sensor->status.vflip) {
reg20 |= 0x01;
reg4514_test |= 1;
}
// H-Mirror
if (sensor->status.hmirror) {
reg21 |= 0x02;
reg4514_test |= 2;
}
switch (reg4514_test) {
}
if (write_reg(sensor->slv_addr, TIMING_TC_REG20, reg20 | reg21)) {
ESP_LOGE(TAG, "Setting Image Options Failed");
ret = -1;
}
ESP_LOGD(TAG, "Set Image Options: Compression: %u, Binning: %u, V-Flip: %u, H-Mirror: %u, Reg-4514: 0x%02x",
sensor->pixformat == PIXFORMAT_JPEG, sensor->status.binning, sensor->status.vflip, sensor->status.hmirror, reg4514);
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
sensor->status.framesize = framesize;
ret = write_regs(sensor->slv_addr, sensor_default_regs);
if (framesize == FRAMESIZE_QVGA) {
ESP_LOGD(TAG, "Set FRAMESIZE_QVGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA);
#if CONFIG_NT99141_SUPPORT_XSKIP
ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: xskip mode");
ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA_xskip);
#elif CONFIG_NT99141_SUPPORT_CROP
ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: crop mode");
ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA_crop);
#endif
} else if (framesize == FRAMESIZE_VGA) {
ESP_LOGD(TAG, "Set FRAMESIZE_VGA");
// ret = write_regs(sensor->slv_addr, sensor_framesize_VGA);
ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_xyskip);// Resolution:640*360 This configuration is equally-scaled without deforming
#ifdef CONFIG_NT99141_SUPPORT_XSKIP
ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: xskip mode");
ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_xskip);
#elif CONFIG_NT99141_SUPPORT_CROP
ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: crop mode");
ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_crop);
#endif
} else if (framesize >= FRAMESIZE_HD) {
ESP_LOGD(TAG, "Set FRAMESIZE_HD");
ret = write_regs(sensor->slv_addr, sensor_framesize_HD);
} else {
ESP_LOGD(TAG, "Dont suppost this size, Set FRAMESIZE_VGA");
ret = write_regs(sensor->slv_addr, sensor_framesize_VGA);
}
return ret;
}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.hmirror = enable;
ret = set_image_options(sensor);
if (ret == 0) {
ESP_LOGD(TAG, "Set h-mirror to: %d", enable);
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
sensor->status.vflip = enable;
ret = set_image_options(sensor);
if (ret == 0) {
ESP_LOGD(TAG, "Set v-flip to: %d", enable);
}
return ret;
}
static int set_quality(sensor_t *sensor, int qs)
{
int ret = 0;
ret = write_reg(sensor->slv_addr, COMPRESSION_CTRL07, qs & 0x3f);
if (ret == 0) {
sensor->status.quality = qs;
ESP_LOGD(TAG, "Set quality to: %d", qs);
}
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR, enable);
if (ret == 0) {
sensor->status.colorbar = enable;
ESP_LOGD(TAG, "Set colorbar to: %d", enable);
}
return ret;
}
static int set_gain_ctrl(sensor_t *sensor, int enable)
{
int ret = 0;
ret = write_reg_bits(sensor->slv_addr, 0x32bb, 0x87, enable);
if (ret == 0) {
ESP_LOGD(TAG, "Set gain_ctrl to: %d", enable);
sensor->status.agc = enable;
}
return ret;
}
static int set_exposure_ctrl(sensor_t *sensor, int enable)
{
int ret = 0;
int data = 0;
// ret = write_reg_bits(sensor->slv_addr, 0x32bb, 0x87, enable);
data = read_reg(sensor->slv_addr, 0x3201);
ESP_LOGD(TAG, "set_exposure_ctrl:enable");
if (enable) {
ESP_LOGD(TAG, "set_exposure_ctrl:enable");
ret = write_reg(sensor->slv_addr, 0x3201, (1 << 5) | data);
} else {
ESP_LOGD(TAG, "set_exposure_ctrl:disable");
ret = write_reg(sensor->slv_addr, 0x3201, (~(1 << 5)) & data);
}
if (ret == 0) {
ESP_LOGD(TAG, "Set exposure_ctrl to: %d", enable);
sensor->status.aec = enable;
}
return ret;
}
static int set_whitebal(sensor_t *sensor, int enable)
{
int ret = 0;
if (ret == 0) {
ESP_LOGD(TAG, "Set awb to: %d", enable);
sensor->status.awb = enable;
}
return ret;
}
//Advanced AWB
static int set_dcw_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
if (ret == 0) {
ESP_LOGD(TAG, "Set dcw to: %d", enable);
sensor->status.dcw = enable;
}
return ret;
}
//night mode enable
static int set_aec2(sensor_t *sensor, int enable)
{
int ret = 0;
if (ret == 0) {
ESP_LOGD(TAG, "Set aec2 to: %d", enable);
sensor->status.aec2 = enable;
}
return ret;
}
static int set_bpc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
if (ret == 0) {
ESP_LOGD(TAG, "Set bpc to: %d", enable);
sensor->status.bpc = enable;
}
return ret;
}
static int set_wpc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
if (ret == 0) {
ESP_LOGD(TAG, "Set wpc to: %d", enable);
sensor->status.wpc = enable;
}
return ret;
}
//Gamma enable
static int set_raw_gma_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
if (ret == 0) {
ESP_LOGD(TAG, "Set raw_gma to: %d", enable);
sensor->status.raw_gma = enable;
}
return ret;
}
static int set_lenc_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
if (ret == 0) {
ESP_LOGD(TAG, "Set lenc to: %d", enable);
sensor->status.lenc = enable;
}
return ret;
}
static int get_agc_gain(sensor_t *sensor)
{
ESP_LOGD(TAG, "get_agc_gain can not be configured at present");
return 0;
}
//real gain
static int set_agc_gain(sensor_t *sensor, int gain)
{
ESP_LOGD(TAG, "set_agc_gain can not be configured at present");
// ESP_LOGD(TAG, "GAIN = %d\n", gain);
int cnt = gain / 2;
switch (cnt) {
case 0:
ESP_LOGD(TAG, "set_agc_gain: 1x");
write_reg(sensor->slv_addr, 0X301D, 0X00);
break;
case 1:
ESP_LOGD(TAG,"set_agc_gain: 2x");
write_reg(sensor->slv_addr, 0X301D, 0X0F);
break;
case 2:
ESP_LOGD(TAG,"set_agc_gain: 4x");
write_reg(sensor->slv_addr, 0X301D, 0X2F);
break;
case 3:
ESP_LOGD(TAG,"set_agc_gain: 6x");
write_reg(sensor->slv_addr, 0X301D, 0X37);
break;
case 4:
ESP_LOGD(TAG,"set_agc_gain: 8x");
write_reg(sensor->slv_addr, 0X301D, 0X3F);
break;
default:
ESP_LOGD(TAG,"fail set_agc_gain");
break;
}
return 0;
}
static int get_aec_value(sensor_t *sensor)
{
ESP_LOGD(TAG, "get_aec_value can not be configured at present");
return 0;
}
static int set_aec_value(sensor_t *sensor, int value)
{
ESP_LOGD(TAG, "set_aec_value can not be configured at present");
int ret = 0;
// ESP_LOGD(TAG, " set_aec_value to: %d", value);
ret = write_reg_bits(sensor->slv_addr, 0x3012, 0x00, (value >> 8) & 0xff);
ret = write_reg_bits(sensor->slv_addr, 0x3013, 0x01, value & 0xff);
if (ret == 0) {
ESP_LOGD(TAG, " set_aec_value to: %d", value);
// sensor->status.aec = enable;
}
return ret;
}
static int set_ae_level(sensor_t *sensor, int level)
{
ESP_LOGD(TAG, "set_ae_level can not be configured at present");
int ret = 0;
if (level < 0) {
level = 0;
} else if (level > 9) {
level = 9;
}
for (int i = 0; i < 5; i++) {
ret += write_reg(sensor->slv_addr, sensor_ae_level[ 5 * level + i ][0], sensor_ae_level[5 * level + i ][1]);
}
if (ret) {
ESP_LOGE(TAG, " fail to set ae level: %d", ret);
}
return 0;
}
static int set_wb_mode(sensor_t *sensor, int mode)
{
int ret = 0;
if (mode < 0 || mode > 4) {
return -1;
}
ret = write_reg(sensor->slv_addr, 0x3201, (mode != 0));
if (ret) {
return ret;
}
switch (mode) {
case 1://Sunny
ret = write_reg16(sensor->slv_addr, 0x3290, 0x01)
|| write_reg16(sensor->slv_addr, 0x3291, 0x38)
|| write_reg16(sensor->slv_addr, 0x3296, 0x01)
|| write_reg16(sensor->slv_addr, 0x3297, 0x68)
|| write_reg16(sensor->slv_addr, 0x3060, 0x01);
break;
case 2://Cloudy
ret = write_reg16(sensor->slv_addr, 0x3290, 0x01)
|| write_reg16(sensor->slv_addr, 0x3291, 0x51)
|| write_reg16(sensor->slv_addr, 0x3296, 0x01)
|| write_reg16(sensor->slv_addr, 0x3297, 0x00)
|| write_reg16(sensor->slv_addr, 0x3060, 0x01);
break;
case 3://INCANDESCENCE]
ret = write_reg16(sensor->slv_addr, 0x3290, 0x01)
|| write_reg16(sensor->slv_addr, 0x3291, 0x30)
|| write_reg16(sensor->slv_addr, 0x3296, 0x01)
|| write_reg16(sensor->slv_addr, 0x3297, 0xCB)
|| write_reg16(sensor->slv_addr, 0x3060, 0x01);
break;
case 4://FLUORESCENT
ret = write_reg16(sensor->slv_addr, 0x3290, 0x01)
|| write_reg16(sensor->slv_addr, 0x3291, 0x70)
|| write_reg16(sensor->slv_addr, 0x3296, 0x01)
|| write_reg16(sensor->slv_addr, 0x3297, 0xFF)
|| write_reg16(sensor->slv_addr, 0x3060, 0x01);
break;
default://AUTO
break;
}
if (ret == 0) {
ESP_LOGD(TAG, "Set wb_mode to: %d", mode);
sensor->status.wb_mode = mode;
}
return ret;
}
static int set_awb_gain_dsp(sensor_t *sensor, int enable)
{
int ret = 0;
int old_mode = sensor->status.wb_mode;
int mode = enable ? old_mode : 0;
ret = set_wb_mode(sensor, mode);
if (ret == 0) {
sensor->status.wb_mode = old_mode;
ESP_LOGD(TAG, "Set awb_gain to: %d", enable);
sensor->status.awb_gain = enable;
}
return ret;
}
static int set_special_effect(sensor_t *sensor, int effect)
{
int ret = 0;
if (effect < 0 || effect > 6) {
return -1;
}
uint8_t *regs = (uint8_t *)sensor_special_effects[effect];
ret = write_reg(sensor->slv_addr, 0x32F1, regs[0])
|| write_reg(sensor->slv_addr, 0x32F4, regs[1])
|| write_reg(sensor->slv_addr, 0x32F5, regs[2])
|| write_reg(sensor->slv_addr, 0x3060, regs[3]);
if (ret == 0) {
ESP_LOGD(TAG, "Set special_effect to: %d", effect);
sensor->status.special_effect = effect;
}
return ret;
}
static int set_brightness(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t value = 0;
switch (level) {
case 3:
value = 0xA0;
break;
case 2:
value = 0x90;
break;
case 1:
value = 0x88;
break;
case -1:
value = 0x78;
break;
case -2:
value = 0x70;
break;
case -3:
value = 0x60;
break;
default: // 0
break;
}
ret = write_reg(sensor->slv_addr, 0x32F2, value);
if (ret == 0) {
ESP_LOGD(TAG, "Set brightness to: %d", level);
sensor->status.brightness = level;
}
return ret;
}
static int set_contrast(sensor_t *sensor, int level)
{
int ret = 0;
uint8_t value1 = 0, value2 = 0 ;
switch (level) {
case 3:
value1 = 0xD0;
value2 = 0xB0;
break;
case 2:
value1 = 0xE0;
value2 = 0xA0;
break;
case 1:
value1 = 0xF0;
value2 = 0x90;
break;
case 0:
value1 = 0x00;
value2 = 0x80;
break;
case -1:
value1 = 0x10;
value2 = 0x70;
break;
case -2:
value1 = 0x20;
value2 = 0x60;
break;
case -3:
value1 = 0x30;
value2 = 0x50;
break;
default: // 0
break;
}
ret = write_reg(sensor->slv_addr, 0x32FC, value1);
ret = write_reg(sensor->slv_addr, 0x32F2, value2);
ret = write_reg(sensor->slv_addr, 0x3060, 0x01);
if (ret == 0) {
ESP_LOGD(TAG, "Set contrast to: %d", level);
sensor->status.contrast = level;
}
return ret;
}
static int set_saturation(sensor_t *sensor, int level)
{
int ret = 0;
if (level > 4 || level < -4) {
return -1;
}
uint8_t *regs = (uint8_t *)sensor_saturation_levels[level + 4];
{
ret = write_reg(sensor->slv_addr, 0x32F3, regs[0]);
if (ret) {
return ret;
}
}
if (ret == 0) {
ESP_LOGD(TAG, "Set saturation to: %d", level);
sensor->status.saturation = level;
}
return ret;
}
static int set_sharpness(sensor_t *sensor, int level)
{
int ret = 0;
if (level > 3 || level < -3) {
return -1;
}
uint8_t mt_offset_2 = (level + 3) * 8;
uint8_t mt_offset_1 = mt_offset_2 + 1;
ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x40, false)//0x40 means auto
|| write_reg(sensor->slv_addr, 0x5300, 0x10)
|| write_reg(sensor->slv_addr, 0x5301, 0x10)
|| write_reg(sensor->slv_addr, 0x5302, mt_offset_1)
|| write_reg(sensor->slv_addr, 0x5303, mt_offset_2)
|| write_reg(sensor->slv_addr, 0x5309, 0x10)
|| write_reg(sensor->slv_addr, 0x530a, 0x10)
|| write_reg(sensor->slv_addr, 0x530b, 0x04)
|| write_reg(sensor->slv_addr, 0x530c, 0x06);
if (ret == 0) {
ESP_LOGD(TAG, "Set sharpness to: %d", level);
sensor->status.sharpness = level;
}
return ret;
}
static int set_gainceiling(sensor_t *sensor, gainceiling_t level)
{
ESP_LOGD(TAG, "set_gainceiling can not be configured at present");
return 0;
}
static int get_denoise(sensor_t *sensor)
{
return (read_reg(sensor->slv_addr, 0x5306) / 4) + 1;
}
static int set_denoise(sensor_t *sensor, int level)
{
ESP_LOGD(TAG, "set_denoise can not be configured at present");
return 0;
}
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = 0, ret2 = 0;
if (mask > 0xFF) {
ret = read_reg16(sensor->slv_addr, reg);
if (ret >= 0 && mask > 0xFFFF) {
ret2 = read_reg(sensor->slv_addr, reg + 2);
if (ret2 >= 0) {
ret = (ret << 8) | ret2 ;
} else {
ret = ret2;
}
}
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret > 0) {
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0, ret2 = 0;
if (mask > 0xFF) {
ret = read_reg16(sensor->slv_addr, reg);
if (ret >= 0 && mask > 0xFFFF) {
ret2 = read_reg(sensor->slv_addr, reg + 2);
if (ret2 >= 0) {
ret = (ret << 8) | ret2 ;
} else {
ret = ret2;
}
}
} else {
ret = read_reg(sensor->slv_addr, reg);
}
if (ret < 0) {
return ret;
}
value = (ret & ~mask) | (value & mask);
if (mask > 0xFFFF) {
ret = write_reg16(sensor->slv_addr, reg, value >> 8);
if (ret >= 0) {
ret = write_reg(sensor->slv_addr, reg + 2, value & 0xFF);
}
} else if (mask > 0xFF) {
ret = write_reg16(sensor->slv_addr, reg, value);
} else {
ret = write_reg(sensor->slv_addr, reg, value);
}
return ret;
}
static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning)
{
int ret = 0;
ret = write_addr_reg(sensor->slv_addr, X_ADDR_ST_H, startX, startY)
|| write_addr_reg(sensor->slv_addr, X_ADDR_END_H, endX, endY)
|| write_addr_reg(sensor->slv_addr, X_OFFSET_H, offsetX, offsetY)
|| write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, totalX, totalY)
|| write_addr_reg(sensor->slv_addr, X_OUTPUT_SIZE_H, outputX, outputY);
if (!ret) {
sensor->status.scale = scale;
sensor->status.binning = binning;
ret = set_image_options(sensor);
}
return ret;
}
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div)
{
return set_pll(sensor, bypass > 0, multiplier, sys_div, pre_div, root_2x > 0, seld5, pclk_manual > 0, pclk_div);
}
esp_err_t xclk_timer_conf(int ledc_timer, int xclk_freq_hz);
static int set_xclk(sensor_t *sensor, int timer, int xclk)
{
int ret = 0;
if (xclk > 10)
{
ESP_LOGE(TAG, "only XCLK under 10MHz is supported, and XCLK is now set to 10M");
xclk = 10;
}
sensor->xclk_freq_hz = xclk * 1000000U;
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
return ret;
}
static int init_status(sensor_t *sensor)
{
sensor->status.brightness = 0;
sensor->status.contrast = 0;
sensor->status.saturation = 0;
sensor->status.sharpness = (read_reg(sensor->slv_addr, 0x3301));
sensor->status.denoise = get_denoise(sensor);
sensor->status.ae_level = 0;
sensor->status.gainceiling = read_reg16(sensor->slv_addr, 0x32F0) & 0xFF;
sensor->status.awb = check_reg_mask(sensor->slv_addr, ISP_CONTROL_01, 0x10);
sensor->status.dcw = !check_reg_mask(sensor->slv_addr, 0x5183, 0x80);
sensor->status.agc = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN);
sensor->status.aec = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN);
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, TIMING_TC_REG21, TIMING_TC_REG21_HMIRROR);
sensor->status.vflip = check_reg_mask(sensor->slv_addr, TIMING_TC_REG20, TIMING_TC_REG20_VFLIP);
sensor->status.colorbar = check_reg_mask(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR);
sensor->status.bpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x04);
sensor->status.wpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x02);
sensor->status.raw_gma = check_reg_mask(sensor->slv_addr, 0x5000, 0x20);
sensor->status.lenc = check_reg_mask(sensor->slv_addr, 0x5000, 0x80);
sensor->status.quality = read_reg(sensor->slv_addr, COMPRESSION_CTRL07) & 0x3f;
sensor->status.special_effect = 0;
sensor->status.wb_mode = 0;
sensor->status.awb_gain = check_reg_mask(sensor->slv_addr, 0x3000, 0x01);
sensor->status.agc_gain = get_agc_gain(sensor);
sensor->status.aec_value = get_aec_value(sensor);
sensor->status.aec2 = check_reg_mask(sensor->slv_addr, 0x3000, 0x04);
return 0;
}
int NT99141_init(sensor_t *sensor)
{
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_contrast;
sensor->set_brightness = set_brightness;
sensor->set_saturation = set_saturation;
sensor->set_sharpness = set_sharpness;
sensor->set_gainceiling = set_gainceiling;
sensor->set_quality = set_quality;
sensor->set_colorbar = set_colorbar;
sensor->set_gain_ctrl = set_gain_ctrl;
sensor->set_exposure_ctrl = set_exposure_ctrl;
sensor->set_whitebal = set_whitebal;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->init_status = init_status;
sensor->set_aec2 = set_aec2;
sensor->set_aec_value = set_aec_value;
sensor->set_special_effect = set_special_effect;
sensor->set_wb_mode = set_wb_mode;
sensor->set_ae_level = set_ae_level;
sensor->set_dcw = set_dcw_dsp;
sensor->set_bpc = set_bpc_dsp;
sensor->set_wpc = set_wpc_dsp;
sensor->set_awb_gain = set_awb_gain_dsp;
sensor->set_agc_gain = set_agc_gain;
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
sensor->set_denoise = set_denoise;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_res_raw = set_res_raw;
sensor->set_pll = _set_pll;
sensor->set_xclk = set_xclk;
return 0;
}